
0 Fermi National Accelerator Laboratory
FERMILAB-Conf-85/94
2380.000

THE FERMILAB ADVANCED COMPUTER PROGRAM MULTI-MICROPROCESSOR PROJECT*

T. Nash, H. Areti, J. Biel, G. Case, A. Cook, M. Fischler,
I. Gaines, R. Hance, D. Husby, and T. Zmuda

Advanced Computer Program

June 1985

*Presented at the 1985 Computing in High Energy Physics, Amsterdam,
Netherlands, June 25-28, 1985.

a Operated by Unlversitles Research Association Inc. under contract with the United States Department of Energy

The Fermilab Advanced Computer Program Multi-Microprocessor Project

T. Nash, H. Areti, J. Biel, G. Case, A. Cook,
M. Fischler, I. Gaines, R. Hance, D. Husby, T. Zmuda

Fermilab, Batavia, Illinois 60510

Fermilab's Advanced Computer Program is
constructing a powerful 128 node multi-microprocessor
system for data analysis in high-energy physics. The
system will use commercial 32-bit microprocessors
programned in Fortran-77. Extensive software supports
easy migration of user applications from a
uniprocessor environment to the multiprocessor and
provides sophisticated program development, debugging,
and error handling and recovery tools. This system is
designed to be readily copied, providing COmpUting

cost effectiveness of below $2200 per VAX 11/780
equivalent. The low cost, commercial availability,
compatibility with off-line analysis programs, and
high data bandwidths (up to 160 MByte/set) make the
system an ideal choice for applications to on-line
triggers as well as an offline data processor.

INTRODUCTION

The need for computing in high-energy physics has expanded to such an extent
that it is TX) longer possible to do all the computing that is necessary on
conventional mainframes. Single experiments amass tens of millions of events;
each of which requires several seconds of mainframe CPU time. The turn-on of the
new collider experiments like CDF and DO at Fermilab and the LEP experiments, all
with large computing appetites, further incFeases the need for less expensive
computing power.

Fermilab has established the Advanced Computer Program (ACP) [ll to research
and develop more cost-effective and productive ways for high-energy physicists to
use computing. The group's first project takes advantage of the event-oriented
rB.ture of the experimental high-energy physics computing problem to produce a
powerful and efficient parallel processing system. Based on. large arrays of
commercial 32-bit microprocessors programable in Fortran, this will provide very
cost-effective computing for data analysis. In this paper we will describe this
initial project and its on and off line applications.

DESIGN GOALS

The primary design goal of the ACP multi-microprocessor SyStem is to IUs.ximi!ae
cost effectiveness, in terms of useful computing /dollar. This goal can be met by
using two basic strategies: First, high-volume cormnercial microprocessors are the
computing engines of the system. Such processors provide extremely high
cost-effectiveness and are programmable in high level languages. Second,~ at later
stages of the project, the CPUs will be augmented with custom "hardware
subroutine" co-processors. The original aim was to achieve, without
co-processors, an equivalent computing power of better than 1 VAX 11/780 for
$5000. This goal now appears likely to be exceeded by more than a factor of two.

-2-
Equally important is the gcal of ease of use, or user-friendliness. Special

purpose processors for particular applications can be designed to run almost
arbitrarily fast, but these are very inflexible and difficult to program- and
conmission. We require that the processors of our system be programmable in
Fortran-77, the standard for application programs in high-energy physics. The
user interface for program development, dehixting, etc. must be at least as
friendly as that provided by the VAX VMS operating system, another widespread
standard in high-energy physics. Finally, the user must be able to transport a
program already working on a VAX or similar uniprocessor system to the ACP system
with a minimum of effort, without extensive program conversions.

The third design gcal is flexibility and modularity. The ACP system consists
of building blocks that can be easily reconfigured to meet the specific needs of
different users. Different users may require more or less memory or different
amounts of CPU power per I/O bandwidth. The modular approach also guarantees that
the system can be easily upgraded as newer and more efficient processors become
available. This allows the system to take advantage of the most advanced and
cost-effective components available from industry at =w time without
x-e-engineering the entire system. This also means that the system should not be
totally reliant on any single vendor for critical components (such as the CPU chip
or' board).

The fourth design goal is that the system should be easily copied and
maintained by non-experts. Users anywhere in the scientific community should be
able to build and configure a system for their own needs without extensive
involvement by ACP personnel. This means that the system should be assembled as
much as possible out of commercially available components.

SYSTEM ARCHITECTURE CONCEPTS

We are not attempting to build a general purpose computer to satisfy all
computing needs, or even all the needs of high energy physicists. Many computing
applications will still require general purpose mainframes with their
sophisticated operating system and full complement of peripheral devices.
However, the large majority of computing cycles in high-energy physics are devoted
to experimental event reconstruction where the same program is run on many
millions of uncorrelated and independent events. The structure of the problem
makes a trivial parallelism possible, giving different events to each of a large
ensemble of processors with little or no interprocessor communication required.

This is an architecture which maintains its high cost effectiveness because
it has no need for complicated shared memory OT synchronization mechanisms that a
fully general purpose parallel processor would need. The two other high-energy
physics problems that will require large amounts of CPU time, accelerator
simulations and lattice gauge theory calculations, also have simple parallelism
inherent in the problems themselves. These problems are well matched to arrays of
simply connected cost-effective microcomputers. In fact, it has been shown 121
that many other scientific computing problems can be well solved with such
systems. We will discuss here only the architecture pertinent to the
reconstruction problem. However, we intend to take advantage of the flexibility
of our system in future research on grid and ring architectures.

This simple event oriented architecture consists of a large array of
processing nodes all connected to a single host processor. The host delivers
events to each of the nodes. When a node completes processing an event, the host
will fetch that event from the node and deliver it a new one for processing. The
core of the system is the individual processing node. It consists of a commercial
32-bit microprocessor, floating point coprocessor, and enough local memory (l-16
MHytes) to contain an entire program. Each node sits on a crate global bus and on
its own private local bus. The global bus is used to download code and data to

JLiiii+
n
E Node

Ii

Node

Node

“iiiiq-
n
E Node

Ii

NoLie

Node

-3-
all the mdes, and (in the future) for the nodes to access any crate global
resources. The local bus allows each node to access its o!.m memory without
interfering with any of the other odes. Customized coprocessor-s and nearest
neighbor interconnections interfaces for use in grid structures will also be added,
in the future, to the processing nodes. The computing power of a node, without
special coprocessors, approaches that of a VAX 11/780 for physics problems in
Fortran.

UAW 730,750,or780
SYSTEM HARDWARE CONFIGURATIONS

The modularity of the ACP software and
hardware allows configurations of v?.rYing
complexity to support different performance and
I/O requirements. A standard arrangement of nodes
for event oriented data analysis is shown in
Fig.1, which also shows other components of the
initial ACP system. The nodes reside in standard
commercial crates. Each crate has a single crate

MEMORY

Fig. 1 ACP system controlled
by a large VAX as root.

Uode l-l

Fig. 2 ACP system controlled by tm MicroVAX 11s.

controller which interfaces the crate to an ACP designed Branch Bus which -4-
connects all the crates. The first crates will be VME, but Multibus II,
Futurebus, BI-bus or other 32 bit buses will be supported with a modified crate
controller, when inappropriate for a particularly cost-effective CPU. The Branch
Bus is a simple single master RS 485 (differential TTL) bus, optimized for high
speed 32-bit block transfers. The Branch Bus transmission scheme has been tested
at speeds up to 40 MBytes/set (one word every 100 nsec), and is intended to be
operated at 20 MBytes/sec~ ,Atthe top of Fig.1 is the "root" of the tree-like
system, where the user's ghost program runs. In this 'simplest implementation
example the root consists of a standard VAX with tape drives, interfaced to the
Branch Bus through a DRll-W IMA interface and a Branch Bus Controller (BBC). An
entry level system of this type, attached to an existing VAX 11/7&l or 11/750
installation, will cost less than $50,000 for over 15 VAX 11/780 power in one
crate of nodes.

Higher performance versions of the ACP system are shown in Fig.2 and 3. In
Fig.2 the root has been expanded. It is here based on two MicroVAXes. One
handles tape I/O and Branch Bus communication, allowing the other MicroVAX to
devote all its CPU power to the user's host program. The two MicroVAXes

U
n
E

Node E Node

Fig. 3 High performance offline multiple root and branch
ACP system with a switch controlled by three MicroVAXes.

-5-

communicate through shared Q-bus memory residing in a VME crate using Q-bus to
VME interfaces (QVI). The system shown in Fig.3 adds an additional MicroVAX .for
output, a bus switch, and a second Branch Bus so that an event can be sent to one
node on one of the Branch Buses at the same time that a second event is being
fetched from a different node on the second bus. The switch allows up to 8
separate Branch Buses to be in simultaneous operation, reaching an aggregate
bandwidth of 160 Mbytes per second. Such a system can thus easily support any
presently conceived on-line application or off-line applications with future
higher speed mass storage peripherals (for example, laser disks). Fig.5
represents the system presently under construction.

SOFTWARE SUPPORT

The user's main software task is to split an existing uniprocessor program
into two pieces, one which will run on the host and a second which will run in
parallel on all of the mdes. The host portion contains all the input and
output: reading raw events from, and writing processed events to, tape, reading
calibration files from disk, printing out results, etc. It also collects global
statistics from mdes. The node portion contains all the actual event
processing, which typically consumes the vast majority of CPU time. By
necessity, all big data analysis programs already cleanly separate these host and
node tasks.

The user will encounter two important software environments. The first is
the development host, a large multi-user VAX system. It has a few mdes attached
to it for compiling and testing, and it supports the program development and
debugging activities described below. All program and data files reside on disks
on the development host, The production host,
single-user

on the other hand, is a
system with a large number of nodes. It is devoted to production

running of a single job for an extended period of time. It is networked to the
development host for downloading of programs and data.

An extensive package of software has been developed by the ACP which makes
the user's task easy. It is described in a full User's Manual [3]. This
software is provided in three layers of increasing complexity. The first layer
provides sufficient functionality for the majority of users with a nrinimum of
parameters and options. The individual user need only use those parts,
of the second layer that are needed for a particular application.

if any,
Layer 3, which

gives complete control over the system, is reserved for experts.

All data passing between the host and the nodes is done by. standard ACP
subroutines called from the user's host Fortran program. There are three modes
of passing data:

1. Event data. Routines SENDEVENT and GETEVENT pass one or more blocks of event
data between the host and a single node;

2. Broadcast data. Routine BROADCAST copies a block of calibration data from
the host to all the mdes.

3. Statistics data. Routine SUMNODE sums blocks of statistics or histogram data
in all the mdes into single corresponding blocks in the host.

The routines referred to above are in layer 1 of the multilayer support. More
generality is available in layer 2. For example, the layer 1 version of
SENDEVENT sends a single block of data to a fixed common block in any available
node. Using layer 2, users can, for example, send multiple blocks of data to the
same mde, direct the event to a particular node or class of nodes, and send
variable length blocks of data.

-6-

Having prepared the Fortran source files for the host and for the nodes, the
user invokes a VMS command procedure MULTICOMP which performs all compilations
necessary to run on the multiprocessor system. This causes node files to be
compiled and linked using the appropriate node compilers. The host file will be
compiled and linked with ACP subroutines, including code that will dounload and
startup the nodes, at run time. The user controls this procedure by entries in a
User Parameter File (UPF). This determines which source files are to be compiled
and linked and which libraries of routines are to be used. The UPF also contains
entries that control error handling and verification (see below), and specify the
particular running avironment the user desires. The running environment can be
simulation within a single VAX, or a small number of nodes for testing attached
to a development host, or a full-scale production system of hundreds of nodes
under the production host. A simple RUN command starts execution.

The "operating system" in the node is extremely simple and written in
Fortran, allowing it to be ported to different types of nodes very quickly. Its
job is to support the Fortran run-time environment (but not to allow major I/O
operation, which are done on the host), and to provide for data transmission from
the host. The user's event prwessing code is a subroutine in the node. When an
event is passed to the node, the system calls the user's code. When processing
is complete the user returns control to the system, which automatically informs
the host of event completion. The node system also supports error handling.

A multiprocessor presents a number of additional ways to deal with errors
beyond those available on a uniprocessor. The ACP system gives the user five
options when an error occurs:

1. Ignore the error

2. Continue with new events in the node where the error occured (losing the
event with the error)

3. Reload and restart the offending node with a fresh copy of the program,
calibration constants, and data arrays

0. Kill the offending mde, continuing the job with the remaining nodes

5. Abort the entire job.

The user can specify in the UPF which of these actions are to be taken for
each of a number of different errors and classes of errors, and can switch to a
more severe action after the Occurrence of a certain number of errors. For
example, the error handler can ignore the first ten divide checks on a particular
node, and then kill that node after any additional divide checks. The user also
specifies what type of error log is to be saved for each error and how many nodes
must remain alive before the job is automatically aborted.. Users can provide
special subroutines to be called on certain error conditions such as ABORT or
timeout. Defaults are provided so the user need make no entries in the UPF to
get standard error handling.

Part of the error handling system is a history file, which keeps track of
the events sent to each node. This is used by ACP utilities to reproduce the
precise sequence of events that produced a crash in some node so that the user
can investigate with an interactive debugger those common situations whet-e an
unsuspected problem in an earlier event causes a crash at a later time.
Traceback support will be provided on the host based on analysis of memory dumps
which may be saved after an error.

-7-
An important debugging technique available only on a multiprocessor system

is verification. An identical event is sent to two different nodes and result
data blocks compared. This technique can catch both subtle hardware failures and
software bugs where the answer is incorrectly dependent on the history of
previous events processed in a particular node. Verification is automatically
performed by the ACP software at a frequency specified by the user in the UPF.

PROJECT STATUS AND SCHEDULE

The ACP project is proceeding in a number of phases. A six-node testbed
system with a complete software prototype was constructed and tested last summer.
This winter, benchmark boards based on the three 32-bit CPUs and accompanying
floating point processors (Motorola 68020/68881, AT&T 32100/32106, and.DEC
78032/71032) were built and performance tests carried out. With the completion
of these preliminary activities we are now in the process of constructing a full
scale 128-node system which is expected to be ready before the end of this year.
Future efforts will include incorporation of higher performance CPUs, higher
bandwidth I/O, development of custom co-processors, and studies of different
interconnect architectures.

The Testbed System consisted of 5 68000 CPUs with 512kB of memory each, and
a single 8086/8087 CPU/FPU with 256kB of memory. The processors were in a 16-bit
Multibus- crate, interfaced to a VAX 11/780 through a DR-11W interface. The
system was operated during the summer of 1984 with the full complement of
software described above. The overall performance of this system was low because
of the limited power of the 16-bit @Us. The system was intended not for
performance but primarily to demonstrate the ease of converting large physics
application programs to the multiprocessor environment. Several actual track
reconstruction programs were run on the multiprocessor after only a few days of
program conversion effort. It also demonstrated that it is possible to use more
than one type of processor in a transparent way and to make efficient use of
multiple processors in the ACP system.

In the next stage of the project test boards for each of the three high
performance 32-bit CPU/FPU chip combinations, Motorola, AT&T, and DEC, were
benchmarked. The beards used fast static RAM so the processors could be run with
0 wait cycles. A fixed number of wait cycles (dip-switch selectable) could be
inserted for all memory references tc study performance degradation for slower
memory systems. Cache options could also be studied.

The 68020 and 3ZlOO suffered less than 10% degradation when run at 1 wait
cycle (total of four CPU cycles for a memory access) with no.external cache.
Since this 1 wait cycle performance can be easily achieved using low-cost
high-density 120 nanosecond dynamic RAM (for processors running at 16.67 MHz),
the decision was made to build the full system using 1 wait cycle memory and no
cache. Thus all benchmarks for these two CPUs were run with 1 wait cycle. The
DEC 78032 CPU, which requires slower memory access times, can be run at 0 wait
cycles with existing DRAM and was benchmarked accordingly.

Benchmarks were run using a physics event simulator and track reconstruction
code, written in Fortran 77. Our standard for comparison is the VAX 11/780 with
floating point accelerator, running Version 3 Fortran. Results were as follows:

CPU

Mot. 68020
AT&T 32100
DEC 78032

Clock Compiler Performance/VAX
MHZ measured expected

16.67 Absoft .57 >.8
lb.67 AThT .74 >.9
40 VMS v4 .89 .89

Both the 68020 and 32100 compilers were unoptimized at the time the benchmarks
were performed, while the 78032 compiler is quite highly optimized. New

-. -a-

optimized versions of the first two compilers will become available later this
year, with expected performance improvements of 30-70s. Our best predictions for
performance at the end oft 1985 are given in the last column of the table.

Presentiy we are designing
and constructing the components
for a full scale system of 128
nodes, using MicroVAXes
hosts. The node CPU boards
be built on standard VME
with 2 MBytes of onboard
Expansion memory up to
of 8 MBytes is
additional VME
bus connection

in a separate VME crate

CPU card allows access to all
address, data and control lines.
This will be used for future
developments such as
interconnections and hardware
subroutines.

The initial system

based processing

for the 68020 CPU multilayer PC
card, which is presently being
laid out. The 32100 CPU board
will be quite similar. Memory'
cards have also been designed.
The branch bus

Fig. 4 Preliminary layout of ACP 68020 VME CPU
and crate

controller are in final
board with 2 Mbytes memory.

specification stage. The system'is expected to be complete, with the full
complement of software described above, before the end of this year. It can be
readily copied at an assembled cost of about $2000 per node,
production host, and other overhead.

including crates,
Omnibyte Corporation, ,245 West Roosevelt

Road, West Chicago, Illinois 60185, will sell the 68020 and 3ZlOO boards at
prices, including a 2 year warranty, very close to self fabrication costs.

ON-LINE APPLICATIONS

The same features which make the ACP system attractive for use in off-line
systems ~(the low cost per node, ease
performance),

of programming, and
also make it suitable for use in

high system
on-line applications. Another

important factor is the ability to use exactly the same software for both
off-line and on-line. The up to 160 MBytes/set bandwidth of the Branch Bus and
switch system exceeds the data collection bandwidth of virtually all experiments.
The large amount of memory available in each CPU node provides a natural place to
buffer events. The system is thus,well-suited for use as a higher level trigger
in an on-line environment.

Fig.5 shows an arrangement of ACP nodes in an on-line experiment. Events
are delivered to the processing oades from the experiment's data acquisition bus
interfaced to the ACP Branch Bus. Branch Bus interfaces are planned for FASTBUS,
C-Bus and Unibus. Events are read out and logged on tape through a MicroVAX root
as in the off-line case. User software controlling the system runs in the
Resource Manager MicroVAX, which should be networked, as in the off-line case, to
a larger development host VAX where promrams are developed, tested, and stored.

ORTR RCc!UIsIIION SYSlrt.4
I I R-22 4 There are several

possibilities for the control ACP I I

L. -+
1

4_
DRU F 11

5 w*y.
OetNel

r-7
BBC

,of the processing nodes in an
'on-line system, depending on
~system requirements.
Simplest is to leave complete
control in the hands of the
ACP Resource Manager. In
this case, the Resource
Manager will communicate the
address of the next free node
to the data acquisition
,supervisor when the event
;occurs. The data acquisition
simply delivers the event to
ithe correct address. If no
!&odes are available, the data
acquisition system must
declare dead time and wait
for a node to become free.
Alternatively, more
intelligence can be vested in
the controllers of the data
acquisition system. In this

I case, the
- Branch Bus

ACP resource
panager continues to check
For errors and monitors event

cmie Of crate or completion. However, the
Node* Nlltkr. kctual allocation of nodes is

done by the experimental data

Ff--.- rizq--J ,g+.$~~;~~~~~~~
Fig. 5 Conceptual design for an On-line system nets too busv.

system using ACP components.
The modularity of the software-in the Resource Manager makes it easy to set

up a system with control distributed appropriately for a particular experiment.
In all cases, some communication path is necessary from the ACP Resource Manager
to the supervisor of the data acquisition system. Depending on the application,
this communication can be over DECNEf, FASTBUS, or other standard buses. Such a
system will be able to deliver 100 events per second to the nodes. The system
could accommodate as many as 512 nodes with a total CPU power of over 400 VAX 780
equivalents. Output rate is determined by the speed of mass storage devices
available, with a single Branch Bus able to run at 20 MBytes/set for output. The
ACP system is expected to be used as the Level 3 trigger for CDF at Fermilab,
Detaiis of the interface to the CDF data acquisition will be designed this
silmmer .

-9-

-lO-

In 'general, online trigger processors are a research area where the
precisely correct approach is not yet clear. Particularly for the SSC, new and
imaginative methods need to be tried and evaluated. A major strength of the ACP
system iS its flexibility, which allows tests of a number of different
configurations before the best approach to the problem of dealing with
luminosities of lo**33 is known.

ACKNOWLEDGEMENTS

S.Bracker made important contributions to the conceptual design of this
project. We also thank D.Portier for assembling the manuscript.

REFERENCES

1. T. Nash et al., "Fermilab's Advanced Computer Research and Development
Program", Proceedings, Three Day In-Depth Review on the Impact of Specialized
Processors in Elementary Particle Physics, Padova, Italy, p. 227, 1983
I. Gaines et al., "The Fermilab ACP Multiprocessor Project", Proceedings,
Symposium of Recent Developments in Computing, Processor and Software Research
for High-Energy Physics, Guanajuato, Mexico, p. 183, 1984
D. Husby et al., "The Fermilab ACP Multi-Microprocessor Project",
Proceedings, IEEE Nuclear Science Symposium, Orlando, Florida, p. 195, 1984

2. G.C.Fox and S. Otto, "Algorithms for Concurrent Processors", Physics Today,
P. 50, May, 1984

3. M.Fischler, "Software for Event Oriented Processing on Multiprocessor
Systems", Proceedings, Guanajuato symposium , p. 175
Advanced Computer Program, "ACP Software User's Guide for Event Oriented
Processing", Rev. Aug. 28, 1984, Fermilab FN-403

